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Numerical predictions are presented for the centrifugally driven free convection in 
a sealed rotating cavity and for the buoyancy-affected flow through a cavity with 
an inner cylindrical source and an outer cylindrical sink. Results for a sealed cavity 
filled with a high-viscosity silicone oil are in good agreement with previously published 
experimental measurements of the mean Nusselt number. When the heat transfer is 
conduction-dominated the results away from the cylindrical surface agree with 
Dorfman’s (1968) similarity solution,’ but as convection becomes important they 
depart from this solution. In an air-filled cavity, for both the free convection and 
radial outflow cases, the results away from the cylindrical surface are generally in 
reasonable agreement with Chew’s (1982) similarity solution, although property 
variations and radial heat conduction do cause some departure from this solution. 
The extent of the region in which the heat transfer was influenced by the presence 
of the cylindrical surface, and the Nusselt number distribution in this region are 
shown to be sensitive to the thermal boundary conditions imposed on this surface. 

1. Introduction 
In  two earlier papers (Chew 1984; Chew, Owen & Pincombe 1984) a finite- 

difference program for prediction of steady sourcesink flow in a rotating cylindrical 
cavity was described and results for a cavity having a net radial outflow of fluid were 
presented. This program has now been extended to solve the energy equation in 
addition to the mass and momentum conservation equations, and to allow for 
property variations of the fluid. In the present paper numerical results are given for 
flows which are induced or strongly affected by buoyancy in the centrifugal force field. 
Three classes of flow are considered: ‘free convection’ in a sealed cavity filled with 
a high-viscosity silicone oil; free convection in an air-filled cavity; and the flow in 
a cavity having a radial outflow of air. Motivation for this work comes from the 
gas-turbine industry where an understanding of the flow between co-rotating disks 
is important for estimating disk cooling rates. 

Insight into the flow in a finite cavity can be gained from the closely related, but 
somewhat simpler, case of the flow between two infinite co-rotating disks at different 
uniform temperatures. Similari ty solutions for centrifugally driven flow have been 
given by several workers. Dorfman’s (1968) solution, which assumes a linear 
temperature profile across the cavity in the solution for the flow field, is valid both 
for the Ekman-layer regime where separate boundary layers on each disk are 
separated by a central core and in a merged boundary-layer regime in which there 
is no central core. Barcilon & Pedlosky (1967) and Hudson (1968) have derived 
solutions for Ekman-layer flow assuming the temperature in each Ekman layer is 
equal to that on the adjacent disk. These solutions are valid for air in convection- 
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dominated conditions at high rotational speed but, owing to the large value of the 
Prandtl number for the high-viscosity oil, do not apply for this fluid. Further 
descriptions of these solutions and extensions to include the effects of a radial 
throughflow of fluid and non-uniform disk temperatures have been given by Chew 
( 1982). 

Relevance of the similarity solutions to the flow in a finite cavity is investigated 
in the present paper. This has previously been discussed, for the sealed cavity, by 
Barcilon & Pedlosky (1967) and Homsy & Hudson (1969). Barcilon & Pedlosky found 
that with an insulating cylindrical boundary it was not possible to match their 
similarity solution to the boundary layer on the cylindrical surface and concluded 
that it was not the limiting solution of a physically realizable experiment in a closed 
container. However, Homsy & Hudson showed that if the cylindrical wall was 
assumed perfectly conducting their zero-order solution for the flow did approach the 
inhite-disk solution towards the centre of the cavity. Several other workers have 
used, and further developed, the methods of Barcilon & Pedlosky and Homsy & 
Hudson to study thermally driven flow in a gas centrifuge (e.g. Matsuda & Hashimoto 
1976; Conlisk, Foster & Walker 1982). This approach is superior to the infinite-disk 
solutions in that account is taken of the cylindrical boundary, but the analysis 
involved is considerably more complicated and in certain parameter ranges recourse 
to numerical methods has to be made. 

Experimental heat-transfer measurements in a closed cylinder with the disks of 
uniform temperatures To and T, have been given by Hudson, Tang & Abell (1978). 
Axial gap to radius ratios (G) of 0.07 and 0.14 were used and the cavity was'filled 
with silicone oil. Two Nusselt number correlations were obtained, corresponding to 
two different oils. For a high-viscosity oil (kinematic viscosity v = 3.5 x lop4 m2/s, 
Prandtl number PT = 3118) the results were represented by 

Nu = 1.13 459-0.26' GO.054. (1.1) 
- 

Here = s?j/km, where .s is the axial gap 
between the disks, is the heat flux averaged over the disk area, k is the thermal 
conductivity and = T, -To is the mean temperature difference between the two 
disks. Gr is a Grashof number defined by Cr = Q2bs3P AT/v2 ,  where a is the rotational 
speed, b is the cavity radius, and p is the coefficient of thermal expansion. The results 
for a low-viscosity oil, which show similar trends to the laminar Ekman-layer theory, 
were correlated by 

where Ree (=  SZb2/v) is a rotational Reynolds number. 
Following a brief description of the mathematical model in the next section, 

numerical results will be presented for the cavity filled with a high-viscosity oil, as 
studied by Hudson et al., in $3, and for an air-filled sealed cavity in $4. Computations 
were also attempted for Hudson et al.'s low-viscosity-oil case. However, owing to 
difficulties encountered in obtaining convergence of the iterative solution, results were 
only obtained for conduction-dominated conditions, and their inclusion, other than 
for demonstrating the accuracy of the solution method, was not considered worth 
while. For the air-filled cavity particular attention has been given to the effect of 
applying different temperature distributions on the disks and the influence of the 
thermal boundary condition on the enclosing cylindrical surface. In $5 results are 
given for the case of radial outflow influenced by buoyancy. The main conclusions 
are then summarized in $6. 

is a mean Nusselt number defined by 

~~ 

= OJj33( P 8 T ) 0 . 8 2 2 R e 0 . 4 9 9 G O . 8 2 6  e (1.2) 
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2. The mathematical model 
2.1. The governing equations 

The following form of the axisymmetric momentum, mass and energy conservation 
equations was used : 

i a  a ap i a  a aw 
r ar az aZ r a r (  3 a,( a J  --(pruw)+-(pw*) = --+-- pr -  +- p- 

i a  a 
- - (pru)+-(pw)  = 0, 
r ar a, 

l a  a 
--(pruh)+-(pwh) 
r ar aZ 

where h is the stagnation enthalpy defined by 

h = C p T + ! j ( ~ 2 + v $ + ~ 2 ) .  (2.6) 

Here u, v9 and w are the radial, tangential and axial components of velocity in the 
stationary cylindrical coordinate system (r, 9, z). T ,  p, k and C ,  denote temperature, 
dynamic viscosity, thermal conductivity and specific heat at constant pressure 
respectively. Cp has been assumed to be constant. 

For the sealed cavities the boundary conditions for the velocity were given by the 
no-slip condition on the surfaces, z = 0, z = s and r = b, and by symmetry at  the axis 
of rotation, r = 0. Several different temperature boundary conditions were investi- 
gated. These are described in the following sections. The modifications to these 
conditions for source-sink flow are given in §5. 

2.2. The Jinite-difference solution 
Finite-difference solutions of the above equations were obtained using the techniques 
described by Chew (1984). The computer program employed was a modified version 
of the TEACH program of Gosman & Ideriah (1976). In  this approach a staggered grid 
is defined, with v6 and p being calculated at the main grid points and u and w being 
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calculated at radially and axially staggered locations which are midway between the 
main grid points. Finite-difference representations of (2.1)-(2.5) are derived from a 
control-volume approach and are then solved iteratively using the ‘SIMPLE ’ algorithm 
defined by Patankar & Spalding (1972). Modifications to the standard method 
included the introduction of step changes on grid size to give sufficient resolution in 
the boundary layers and a more accurate solution of the pressure correction equations 
at each iteration than had previously been used. This latter modification was found 
to improve the convergence of the iterative solution. The ‘hybrid’ differencing 
method employed gives a first-order truncation error when upwind differencing is 
used for the advective terms. For cell Reynolds numbers less than 2, central 
differencing is used for these terms and the scheme is then second-order accurate. 

It was straightforward to modify the iterative solution scheme used in the earlier 
studies of incompressible flow to include solution of the energy equation and to allow 
variable properties. After each update of the velocity and pressure fields, an 
‘improved’ solution for the temperature is calculated from the energy equation. The 
fluid properties corresponding to the new temperature field are then used in the next 
iteration for the velocities. The practice of solving equations for the pressure 
corrections to a given accuracy, while calculating the solutions of the other equations 
from a single double sweep of the ‘line-by-line’ procedure, was again found to be 
effective in improving the rate of convergence. As for the other variables, under- 
relaxation was used for the temperature solution and the rate of convergence of the 
iterative method depended strongly on the choice of this factor. 

The computing time required to obtain a solution varied considerably for different 
cases. In  general, the time required increased with the rotational Reynolds number 
and the number of points in the finite-difference grid and was sensitive to the choice 
of under-relaxation factors. Typically about 30 min of C.P.U. time on the CDC7600 
computer was used to obtain convergence for one particular case. 

In  order to produce streamline plots, values for the stream function were calcu- 
lated from the results for the velocities. The method used was similar to that for 
incompressible flow with the stream function (@) being defined, so that 

where the subscript ref denotes reference conditions. Contour plots of @ and T were 
produced using a standard graphics package. As this required interpolation of the 
results on to a coarser grid than that used for the finite-difference calculation, some 
loss of accuracy in this process must be expected. Thus, although this representation 
of the results does give a valuable insight into the solutions, the finer detail in those 
plots should be regarded with some caution. 

2.3. Accuracy of the numerical solutions 

Results for a cavity filled with low-viscosity oil with isothermal disks, as studied 
experimentally by Hudson et al. (1978), provide a good example of the agree- 
ment between numerical and analytical results. In  this example all fluid properties, 
apart from density and the coefficient of thermal expansion, were assumed con- 
stant. At high Reynolds number thin boundary layers develop and for sufficiently 
small I PAT I the similarity solution for the velocities and temperature is expected 
to be almost exact away from the cylindrical surface. With an adiabatic con- 
dition at the cylindrical surface numerical results were obtained for Re, = 3.15 x lo5, 
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= 0.49 

FIGURE 1.  Radial and tangential velocities for thermally-driven flow of 
a low-viscosity oil : + , numerical ; -, similarity solution. 

w '1 

0.5 0.6 0.7 0.8 0.9 I .O 
r l b  

FIGURE 2. Axial velocity at z / s  = 0.5 for thermally driven flow of a high-viscosity oil, Reo = 5o00, 
BAT = -0.0192: 0, +, numerical results from different finite-difference grids. 

BAT = -0.00134, Pr = 7.19 and G = 0.07. As can be seen from the radial and 
tangential velocity distributions near mid-radius, shown in figure 1,  excellent 
agreement was found between numerical and analytical results. Note that the 
tangential velocity here is referred to a rotating frame so that v = v$-Qr and the 
velocities in this figure are normalized with the factor 

u* = aPIAl'I Qr. (2.8) 

Further comparisons with analytical and experimental results are given in the 
following sections and in the earlier incompressible flow studies by Chew (1984) and 
Chew et al. (1984). 

An example of the use of a step change in grid size to obtain resolution in the 
boundary layers is shown in figure 2. Here, numerical predictions of the axial velocity 
at the mid-axial position on two different finite-difference grids are shown for the 
flow of a high-viscosity oil in a sealed cavity with Re, = 5 x loa, B A T  = -0.0192, 
Pr = 3118 and G = 0.07. The non-dimensionalizing factor in this case is 

(2.9) 
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High-viscosity oil Air 

P (kg/m8) 970u -/W-Trdl P/RTt 
( B  = 0.00096 K-l) (R = 287.2 J kg-' K-l) 

P (kg/ms) 0.3395 1.46 x 10-6 fi/( 110+ T)t  
k (W/mK) 0.159 0.0242 +7.91 x 10-5(T-273)-3.29 x lO-*(T-273)'t 

c p  (J/b K )  1461 1012 
Pr at reference 3118 0.72 

conditions 
7 Temperature in kelvin. 

Table 1 .  Properties of the two fluids considered 

- 
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\ 

- 
(t 

FIGURE 3. Thermally driven flow of a high-viscosity oil, Reo = 5000, @AT = -0.0192; 
(a) streamlines at intervals of 3 x 10-8 mS/s, ( b )  isotherms at 0.2AT intervals. 

Considering that, for the coarser grid, only one radial grid line lies within the 
boundary layer on the surface at  r = b, it is perhaps surprising that the two sets of 
results are so close. Outside the boundary layer the results agree almost exactly, while 
the higher gradients within the boundary layer lead to some difference between the 
two finite-difference solutions. 

Although, as in the above example, some of the results presented here have been 
repeated using different grid sizes to ensure that truncation error was not significant, 
this has not been done in every case. However, care was taken to ensure that 
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FIGURE 4. Radial velocity at r / b  = 0.49 for thermally driven flow of a high-viscosity oil: +, 
numerical results; - , Dorfman (1968). (a )  Ree=250, /?AT=-0.00096. (a) Re8 =5OOO, 
/?AT = -0.00192. (c) Re, = 5O00, /?AT = -0.048. 

reasonable grid definition was attained in the boundary layers. Typically, five or more 
grid points are located in the boundary layers. This compares favourably with other 
workers’ practice; for example, in his study of the transient, thermally driven flow 
in a rotating annulus, Williams (1967) required that at least three points should be 
located within each layer. 

3. An oil-filled sealed cavity 
The problem considered in this section is of a sealed cavity filled with a high-viscosity 

silicone oil, as studied experimentally by Hudson et al. (1978). In  addition to 
providing a good test for the numerical method this also leads to a better understanding 
of the experimental work, as the numerical solutions give the temperature and 
velocity fields throughout the cavity, whereas only mean heat-transfer rates have 
been measured experimentally. 

To simulate Hudson et aZ.’s experimental conditions, the two disks were supposed 
to have uniform temperatures To and T,, and the cylindrical surface was assumed 
adiabatic in the numerical calculations. The radius of the cavity was also chosen to 
model the experimental apparatus so that b = 139.8 mm and the spacing between 
the disks 8 was taken as 9.7 mm, which was the smallest gap for which measurements 
were made. The properties of the oil (and of air) are given in table 1. Note that, owing 
to the high Prandtl number of the oil, the similarity solutions given by Barcilon and 
Pedlosky (1967), Hudson (1968) and Chew (1982), which assume the Ekman-layer 
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FIGURE 5. Axial velocity at z / a  = 0.5 for thermally driven flow of a high-viscosity oil: + , numerical 
results; -, Dorfman (1968). (a)  Re, = 250, BAT = -0.00096. (b )  Reo = 5000, BAT = -0.00192. 
( c )  Reo = 5000, BAT = -0.048. 

thickness to be much less than the thermal boundary-layer thickness, are invalid in 
this case. However, Dorfman’s (1968) solution may still be applied for this fluid. 

The highest rotational speed considered for this case corresponds to Re, = 5000. 
Streamline and isotherm plots for this speed with B A T  = -0.0192 are shown in 
figure 3. It is apparent that convective effects are important for those conditions. 
Fluid flows radially inwards next to the hotter, left-hand disk and radially outwards 
next to the colder, right-hand disk. Where fluid moves axially across the cavity a 
thermal boundary layer forms on the downstream surface. Owing to the high Prandtl 
number, the thickness on the thermal layers is less than that of the velocity boundary 
layers. 

Comparisons be tween Dorfman’s similarity solution and the numerical results 
are shown in figures 4 and 5.  In figure 4 the axial variation of the radial velocity 
near the mid-radial position is shown for three different cases. For Re, = 250, 
/3 A T  = -0.00096 conduction dominates the heat transfer and, as expected, the 
numerical and analytical results agree closely. A t  higher values of Re, and I/3ATI 
the numerical results depart from Dorfman’s solution and are no longer antisymmetric 
about z /8  = 0.5 as is predicted for the conduction-dominated flows. The axial velocity 
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FIQURE 6. Nusselt numbers for the high-viscosity oil. (a) Variation of mean Nusselt number with 
Graahof number: x , numerical results; -, equation (1.1). (b)  Variation of Nusselt number with 
radius: (i) hot disk (ii) cold disk. 

Reo/lV 5 2.5 5 5 5 
--BAT 0.0019 0.0096 0.0096 0.0192 0.048 

Numerical results - _- _ _ _  .-. .-.-. 

at the mid-axial position shown in figure 5 indicates the extent to which the 
rechannelling of fluid at the cylindrical boundary affects the flow in these three 
examples. For Re, = 250, /?AT = -0.00096 this influence appears to be confined to 
the region 0.9 < r/b < 1, while for Re = 5000, /?AT = -0.048 the flow through- 
out the cavity is affected by the rechannelling. At the intermediate conditions 
Re, = 5000, BAT = -0.0019 the axial velocity does appear to reach an asymptotic 
value at small radii which is significantly lower than the analytic solution. 

Mean and local Nusselt numbers for all the convection-dominated cases that have 
been studied are shown in figure 6. From figure 6(a) ,  which shows the variation of 
the mean Nusselt number with the Grashof number, the numerical results can be seen 
to be in good agreement with the experimental correlation equation (1.1). Some 
differences between the results are to be expected as gravitational effects have not 
been included here. As expected, the local Nusselt number distribution is very 

12 F L M  153 
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Numerical results Similarity solution 
Thermal boundary ~ - __ 

Case Re/104 ATIT,,, conditions at r = b Nu, Nu, Nu, 

( i )  1 0.228 aTpr = o 1.4 1.4 1.6 0.8 
( i i )  2 0.228 aTpr = o 1.7 1.7 2.0 0.5 
(iii) 2 0.228 T = To + (21s)  AT 2.0 0.9 2.0 0.5 
(iv) 2 0.391 T = T,+(z/s)AT 3.0 1.3 2.9 0.3 
(v) 2 0 .228(~/b)~ aTpr = o 1.6 1.6 2.4 -0.9 
(vi) 2 0.391[1 - ( r / b ) z ]  aTpr = o 1.9 1.9 1.6 2.1 

TABLE 2. Conditions studied and mean Nusselt numbers for the air-filled sealed cavity 

different for the two disks. Heat transfer from the hot disk is greatest at large radii 
while the heat transfer to the cold disk is greatest at  the centre of the disk and falls 
to zero at r = b. 

It is interesting to note that in all these cases the Nusselt numbers for the two disks 
are equal for a value of r l b  in the range 0.75-0.8. From streamline plots (e.g. 
figure 3) and axial velocity profiles (e.g. figure 5) it was observed that a stagnation 
point in the flow occurs at  about this radius. 

4. An air-filled sealed cavity 
The results given in this section are for a cavity with a radius b of 190 mm and 

an axial gap 5 of 50.7 mm. These correspond to the dimensions used in the isothermal 
flow studies. The properties of air were calculated from the relations given in table 1, 
with the pressure at the centre of the cavity set equal to lo6 Pa. Although the 
perfect-gas law was used to calculate the density, the pressure differences within the 
cavity are relatively small for the conditions considered here, and so, in effect, density 
is a function of temperature only. 

The different cases studied in this section are summarized in table 2. Note that the 
parameter ATIT,,,, where T,,, is the maximum temperature in the cavity is 
comparable to /3 AT used in the previous section. Several different thermal-boundary 
conditions have been considered. The cylindrical surface was assumed adiabatic in 
cases (i), (ii), (v) and (vi), while in the remaining two cases, (iii) and (iv), a linear 
temperature variation between the values for the two disks was specified on this 
surface. In all cases the left-hand disk at z = 0 is assumed isothermal at the reference 
temperature of 288 K. The right-hand disk a t  z = 5, which is the hotter of the two 
disks, is also assumed isothermal in cases (i)-(iv), but in (v) and (vi) quadratic 
temperature variations were used on this disk. 

Streamline and isotherm plots for cases (i) and (vi) are given in figure 7. The 
streamlines for case (i) are typical of conditions (i) to (v), showing Ekman layers on 
each disk, a boundary layer on the outer cylinder and, away from the outer layer, 
axial flow from the hot to the cold disk. The flow structure in case (vi), for which 
the temperature difference across the cavity decreases quadratically from 185 K at 
r = 0, to 0 at r = b,  differs from the other cases in that there is very little rechannelling 
of fluid at  the outer radius and the ‘axial wind’ flows from the cold disk to the hot 
disk in the outer part of the cavity. These effects are consistent with the similarity 
solution (Chew 1982), which predicts a reversal of the axial wind at r / b  = 0.71 and 
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0 f Case (i) i Case (vi) 
Casc (vi) 

FIGURE 7. Thermally driven flow of air for conditions (i) and (vi) of table 2. (a) Streamlines at 
intervals of 1.6 x 10-'I ma/s. ( b )  Isotherms at intervals of 10 K.  

zero flow in the Ekman layers a t  r / b  = 1. The isotherm plots show that the 
temperature distribution is affected by convection for these conditions. The axial flow 
across the cavity compresses the isotherms towards the downstream disk while the 
rechannelling of fluid in the outer layer causes high heat transfer from the hot disk 
in that region. 

Comparisons of non-dimensional axial velocity at z / s  = 0.48 and radial velocity, 
tangential velocity and temperature near r /b  = 0.5, to the similarity solutions are 
shown in figure 8 for the case (iv). Note that the non-dimensional velocities contain 
the multiplying factor PIPref. This was found to bring the results closer to the 
similarity solution in which the density is assumed equal to pref in all but the 
centrifugal force terms. The factor l/Tmax was used for the coefficient of thermal 
expansion /3 appearing in the similarity solution and in the definition of w* and u*. 
From graph 8(a)  it appears that recirculation at the edge of the outer layer occurs 
for these conditions. A similar effect was noted in the isothermal results for sourc-ink 
flow at the higher flow rates studied and a recirculating region in the outer layer was 
predicted in Homsy & Hudson's analytical solutions. The radial velocity profile in 
figure a(&) shows that the results in the Ekman layer next to the cold disk are in 
excellent agreement with the theory. In  the layer next to the hot disk there are some 
differences between the numerical and analytical results but, owing to the property 
variations of the air, these are to be expected. Property variations may also account 

12-2 
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FIGURE 8. Velocity and temperature profiles for thermally driven flow of air: case (iv), 
Reo = 2 x lo4, AT/T,, = 0.391 ; + , numerical results; -, similarity Solution. 

for the departure of the numerical results for the tangential velocity from the 
analytical solution, which is apparent from figure 8 (c). Despite these differences 
between the two sets of results for the velocities, the temperature profile across the 
cavity, shown in figure 8 (d), agrees closely with the similarity solution. 

Figure 9 shows the profiles of temperature and of radial and tangential velocity 
near the mid-radial position for the two examples with non-uniform disk temperatures 
(cases (v) and (vi)). The non-dimensional temperature is defined, such that 
0 = (Ts- T) /AT.  For case (vi) both the temperature and velocities are in reasonable 
agreement with the similarity solution. For case (v) the tangential velocity and the 
temperature show a significant departure from the analytical solution, although the 
radial velocity is somewhat closer to the similarity solution. The discrepancy is 
attributed to radial viscous and heat-conduction effects which are neglected in 
the analytical solution. For a quadratic temperature distribution, the neglect of 
radial viscous effects in the similarity solution is valid provided the group 
I Re;(re/bs) $?AT I $ 1. A t  r /b  = 0.5 the parameter takes the values 0.9 and 4.8 for 
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FIGURE 10. Local Nusselt numbers for an air-filled cavity with isothermal disks: (a) Nusselt number 
distribution on the disks when 6T/& = 0 at r = b;  (b) Nusselt number distribution on the disks 
when T = T,+(z / s )AT at r = b;  ( c )  Nusselt number distribution on the surface r = b when 
T = T,+(z/s)AT at r = b. 

cases (v) and (vi), respectively. Similarly, neglect of radial heat conduction requires 
that 

rAT d A  RdPraATr[l; -+- 2~T(d;7-']1} - I%(T7-'l7 I 16s 

is large. A t  r / b  this parameter takes the values of 0.9 and 3.4 for cases (v) and (vi), 
respectively. 

Local Nusselt number distributions on the disks for the results of the isothermal- 
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disk tests are shown in figures 10(a) and (b). For comparison with the numerical 
results, predictions from the similarity solutions are also shown. For the conditions 
considered here these are given by 

where 
Pr/3R& - s d(r2AT) 

@ =  
8r b dr ' 

(4.3) 

Note that the factor k,/Lref (where k, = k at temperature T,) has been included in 
(4.2) to make some allowance for the increased conductivity near the hot disk: in 
deriving the similarity solution k was assumed constant. As before, /3 has been set 
to l/Tmax. Away from the outer layer the results for all the conditions studied are 
in reasonable agreement with the infinite-disk theory. From the results with an 
adiabatic condition at r = b, shown in figure l O ( a ) ,  it can be seen that the Nusselt 
number distributions shows qualitative similarities to the predictions for the oil-filled 
cavities. The main heat transfer from the hot disk occurs in the outer-layer region 
where cold fluid impinges on this surface while heat transfer to the cold disk is 
strongest towards the centre of the cavity and falls towards zero in the outer layer. 
As expected from the isotherm plots, a change in the thermal boundary condition 
at r = b, to a linear temperature variation, has an important effect on the heat 
transfer in the outer part of the cavity. Comparing the results in figures 10(a) and 
(b) shows that the influence of the rechannelling of fluid in the outer layer is less for 
the linear temperature condition, with the extent of the region in which the results 
depart from the similarity solution being reduced and the maximum value of the 
Nusselt number being lower in this case. The peak in the Nusselt number distributions 
on the cold disk at r / b  in figure 10(b)  is thought to be caused by the secondary 
recirculation at the edge of the outer layer. 

Figure 10 (c) shows the variation of the Nusselt number, defined as Nu = skref qlAT, 
on the cylindrical surface for the two cases in which a linear temperature distribution 
was assumed on this surface. Since the net mass flow of fluid across the cavity in the 
outer layer must equal the flow in the Ekman layers feeding into this region, an 
estimate of this flow rate can be obtained by calculating the mass flow in the Ekman 
layers at r = b from the infinite-disk solution. Assuming that as the fluid flows across 
the cavity its mean temperature changes with axial distance z at the same rate as 
the cylindrical surface temperature, the Nusselt number for heat transfer from this 
surface can then be estimated from a simple heat balance. For a linear temperature 
variation this method gives the result 

(4.4) 

This relation is plotted in figure 1O(c) for comparison with the numerical results. 
For case (iii) (Re, = 2 x lo4, AT/T,,, = 0.228), the numerical predictions are close 
to these results in the region 0.6 < z /s  < 0.85, but the results over the rest of the 
surface, which appear to be influenced by the end conditions at z = 0 and 8,  are lower 
than this. The flow induced in the cavity for the other case (iv), (Re, = 2 x lo4, 
ATIT,,, = 0.391), is somewhat stronger, and for the gap width used here the Nusselt 
number does not appear to  reach a steady value. 

The Nusselt number distributions for the two non-uniform temperature distri- 

Nu = iPr /3 A T  Rej . 
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FIQURE 11.  Local Nusselt numbers for an air-filled cavity with a non-uniform disk temperature. 
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butions studied are shown in figure 11. Looking first at case (v), (Ree = 2 x lo4, 
AT/Tmax = 0.228(~-/b)~), it is apparent that, as expected from the earlier results, the 
numerical and analytical solutions do not agree. The analysis of the radial outflow 
between co-rotating disks with To = T, (Chew 1982) gives a first-order correction 
for radial heat conduction in the core to the Nusselt number of 2(s/r)2 for a quadratic 
temperature distribution. Although the presence of the axial wind in these buoyancy- 
driven flows can be expected to reduce this effect, this does give some indication of 
the significance of the radial conduction terms. In  fact the difference between the 
analytical and numerical predictions is consistent with this result and the two 
solutions do show signs of converging as r / b  increases to about 0.8, but at higher values 
of r / b  than this the numerical results are affected by the outer layer. Numerical and 
analytical results for case (vi), Re, = 2 x lo4, AT/Tmax = 0.391[1- ( r /b)2] ,  are in 
reasonable agreement for r /b  < 0.85. The difference in the results at radii greater than 
this is also attributed to radial heat condition. 
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Mean Nusselt numbers for the different conditions studied are given in table 2. The 
similarity solution results, shown for comparison, were obtained by integration of the 
local heat fluxes given by (4.1) and (4.2). For the two cases in which AT varies with 
radius the integrals were calculated numerically. As with Hudson et al. 's measurements 
for the low-viscosity oil, the numerical results for heat transfer across a cavity with 
isothermal disks and an adiabatic cylindrical surface are slightly less than the 
similarity-solution predictions for the cold disk. 

The effect of introducing a linear temperature condition on the bounding cylindrical 
surface is to bring the heat transfer on both disks closer to the infinite-disk theory. 
For the case ATIT,,, = 0.228(r/b)2 most of the heat transfer occurs in the outer part 
of the cavity where the effects of the cylindrical surface are most important. 
Considering also that radial conduction is important towards the centre of the cavity, 
i t  is not surprising that the Nusselt number for the closed cavity does not agree with 
the infinite-disk theory for these conditions. The numerical results for the case 
ATIT,,, = 0.391[1- (r/b)2] fall midway between the analytical solutions for the hot 
and cold disks. The difference between the analytical results for the two disks is caused 
by the factor ks/kref in (4.2). If the thermal conductivity was constant these two results 
would agree exactly. 

5. A cavity with a radial outflow of air 
Numerical results are given here for radial outflow with a uniform radial source 

and sink, both rotating a t  the same speed as the disk. The disk radius b = 190 mm, 
the inlet radius a = 19 mm and the axial distance between the disks 8 = 50.7 mm. 
A non-dimensional mass-flow parameter C, (=  m/,ub, where m is the net radial mass 
flow rate) is introduced to characterize the radial flow rate. For the results given here, 
a rotational speed corresponding to Re, = 2.5 x lo4 was used and two different mass- 
flow rates were considered, giving C ,  = 38.5 or 79. 

The boundary conditions a t  the source and sink were specified as follows: 

Here Q is the volume flow rate of air, which, owing to density variations, will be 
different at the inlet and outlet. The inlet temperature, TI, was set a t  288K 
throughout. The velocity conditions on the two disks were unchanged from those 
in the previous sections. Various disk temperature distributions were specified ; 
for C, = 38.5, only one case, T, = TI, ATIT,,, = -0.449(r/b)2 was studied; for 
C ,  = 79, the three cases AT/T,,, = -0.319(r/b)2, ATIT,,, = -0.391(r/b)2 and 
ATIT,,, = -0.449(r/b)z with T, = TI and the symmetric case AT = 0, (TS--TI)/ 
T,,, = 0.227(r/b)2 were considered. 

The effects of buoyancy on the flow in this case are illustrated by the streamlines 
for C, = 38.5, ATIT,,, = -0.449(r/b)z shown in figure 12(a). Towards the centre of 
the cavity, where buoyancy forces are less important, the flow is symmetric about 
the mid-axial plane. At higher radii the flow in the Ekman layer on the cold disk is 
increased, while that on the hot disk is reduced, with an axial flow occurring across 
the central core. Above a critical radius the flow on the hot disk reverses and radial 
inflow occurs in this Ekman layer, as for buoyancy-driven flow in a sealed cavity. 
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FIGURE 12. Radial outflow of air, Ree = 2.5 x lo4, C, = 38.5, T, = TI, ATIT,,,,, = -0.449(~/b)~: 
(a) streamlines at intervals of 1.3 x 10-@ m3/s, ( b )  isotherms at intervals of 10 K. 

From the similarity solution i t  follows that the flow reversal occurs a t  a critical radius 
given by 

Putting p = 1/T, in this expression gives a value of r/b for which reversal occurs of 
0.72 in this case. The numerical predictions for the other conditions studied were also 
in reasonable agreement with (5.2) although, as the critical radius approaches the 
cavity radius, the flow reversal occurs at a slightly lower radius than is predicted by 
this equation. 

The trends shown in the streamline plots are reflected in the isotherms which are 
shown in figure 12(b). At small radii there is a small axial temperature difference 
across the heated Ekman layer which decreases as the radius increases. At higher 
radii, but away from the influence of the rechannelling of fluid by the outer cylinder, 
the isotherm plots show that the temperature a t  the hot disk is propagated into the 
central core by the axial wind. The fluid temperature is the'n reduced to that of the 
cold disk as i t  traverses a thermal boundary layer, which is somewhat thicker than 
the Ekman layers. 

Figure 13 shows radial and tangential velocity across the cavity for the 
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FIGURE 13. Radial and tangential velocity profiles for radial outflow of air, Re, = 2.5 x lo4; (a)  
C, = 79,  AT = 0, (Ts-TI)/Tmax = 0.227(r/b)a; (a) C, = 38.5, AT = -0.449(r/b)%, T, = T,; x , 
numerical results ; -, similarity solution. 

cases C,  = 79 with AT = 0, (Ts-TI)/Tmax = 0.227(~/b)~ and C,  = 38.5 with 
ATIT,,, = -0.449(r/b)2, T, = TI. Here the velocities are normalized by division by 
fil, the linear isothermal prediction for the tangential velocity in the core region, 

(5.3) which is given by - v1 = 2€rSZr, 

where 8,. (= b2C,/Re$4nr2) is a Rossby number for the forced flow. As before, /? has 
been taken as i/Tmax in obtaining the results from the similarity solutions which are 
also shown on this figure. Considering the property variations within the fluid and 
the simplifying assumptions used in deriving the analytical solutions, the agreement 
between numerical and the theoretical results is reasonable. Comparison with the 
earlier results for isothermal flow suggests that, in the symmetrically heated case, 
the increased temperature at  larger radii leads to a slight reduction in the value of 
lpVl in the outer part of the cavity. 

Local Nusselt numbers, based on hot-disk-to-inlet temperature difference (To - TI) 
for the various conditions studied, are shown in figure 14. Also shown are the results 
from the similarity solution which for these conditions are given by 

@ 8% - NU, = 
krer(To-TI) 1-e-"' (5.4) 

where 
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and qo and qs are the heat fluxes a t  the disk surfaces. Dorfman’s (1963) ‘free disk’ 
result for heat transfer from the hot disk is expected to approximate the results in 
the ‘source region’ and so this is given in figure 14(b). For air, with a quadratic 
temperature distribution on the disk, this may be written 

18 flzt, = 0.530 Re’ -. 
I & b  

(5.7) 

Note that the coefficient of thermal expansion has been taken as l/To here, rather 
than l/Tmax as used in calculating the velocity solutions in figure 13. 

Looking first at figure 13(b), i€ i’s apparent that bcoyancy effects can lead to a 
reduction in heat transfer from the hot disk.,As expected from earlier studies, the 
results for case (i), in which the two disks have identical temperature distributions, 
are close to (5.7) in the inner layer and (5.5) in the EItman-layer region. In  cases (ii)-(iv) 
the heat transfer in the Ekman-layer region is reduced as the temperature difference 
across the cavity increases : (5.5) appears to give a reasonable estimate of the Nusselt 
number in the Ekman-layer region, although the agreement for the buoyancy-affected 
cases, (ii)-(v), is not as good as that for case (i). As the agreement between (5.5) and 
the numerical result is better at the lower flow rate (case (v)) than in (ii) -(iv) it seems 
likely that the discrepancy between the two sets of results is caused by the neglect 
of nonlinear terms in the similarity solution. 

The level of heat transfer to the colder disk, shown by the Nusselt number 
distributions in figure 14(a), is somewhat less than. that from the hot disk. There is 
also a greater difference between the numerical results and the analytical solutions 
in this case. The influence of the outer layer appears to extend well into the cavity, 
reducing the heat transfer below that which would be attained between infinite disks. 

6. Conclusions 
A computer program previously used to study isothermal flow has been further 

developed to allow for buoyancy effects. In  a study of centrifugally driven convection 
in a sealed rotating cavity two different fluids were considered : the high-viscosity 
silicone oil used in Hudson et aL’s (1978) experiments, and air. Numerical results are 
also presented for buoyancy-affected flow in a rotating cavity with a radial outflow 
of air. 

Predictions of the mean Nusselt number for the high-viscosity oil ( u  = 3.5 x 
10-4 m2/s, Pr = 3118) are in good agreement with Hudson et aZ.’s measurements. In  
conduction-dominated conditions the numerical results for the temperature and 
velocity sway from the outer layer are in good agreement with Dorfman’s (1968) 
similarity solution. As convective heat transfer becomes more important the results 
depart from this solution and the presence of thp outer cylindrical surface appears 
to affect the heat transfer throughout the cavity. The local Nusselt numbers are 
strongly dependent on radial position. 

In  the study of an air-filled sealed cavity attentien was concentrated on the effects 
of the thermal boundary condition at r = b and a non-uniform disk-temperature 
distribution. Away from the outer layer a similarity solution, which assumes constant 
viscosity and conductivity and uses the Bousinesq approximation for the density, 
still gives a reasonable representation of the flow and temperature fields despite 
considerable property variations. However, depending on the radial temperature 
distributionand thestrengthoftheconvective flow, radialviscous and heat-conduction 
effects, which are not taken into account in the similarity solution, may be important. 
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The influence of the cylindrical surface on the heat transfer to the disks is significantly 
reduced by the replacement of an adiabatic condition on this surface with a specified 
linear temperature distribution. Numerical results for the air-filled cavity with 
isothermal disks show that the mean Nusselt number for the cold disk falls slightly 
below that predicted from infinite-disk theory. The mean Nusselt number for the hot 
disk is strongly dependent on the thermal boundary condition on the cylindrical 
surface. 

In radial outflow the flow may be strongly affected by buoyancy if there is an axial 
temperature difference between the disks. For the quadratic temperature distribution 
considered, the first effects of buoyancy are a reduction in the mass flow in the Ekman 
layer on the hot disk and a corresponding increase in the flow next to the cooler disk. 
This leads to a decrease in the heat transfer from the hot disk and some heat flow 
across the cavity to the cold disk. As buoyancy effects become dominant, the flow 
becomes similar to that in a sealed cavity, with the flow next to the hot disk being 
radially inwards. These results are also consistent with similarity solutions for the 
flow between two infinite disks. 

This work was undertaken during the tenure of a Research Fellowship, supported 
by Rolls-Royce limited, at the Thermo-Fluid Mechanics Research Centre, University 
of Sussex. I would like to thank Dr J. M. Owen for his interest in this project. 
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